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Estimating Diagnostic Accuracy from Multiple
Conflicting Reports: 
A New Meta-analytic Method

BENJAMIN LITTENBERG, MD, LINCOLN E. MOSES, PhD

Reports of diagnostic accuracy often differ. The authors present a method to summarize
disparate reports that uses a logistic transformation and linear regression to produce a
summary receiver operating characteristic curve. The curve is useful for summarizing a body
of diagnostic accuracy literature, comparing technologies, detecting outliers, and finding the
optimum operating point of the test. Examples from clinical chemistry and diagnostic radiology
are provided. By extending the logic of meta-analysis to diagnostic testing, the method
provides a new tool for technology assessment. Key words: meta-analysis; sensitivity and
specificity; decision support; data interpretation, statistical; regression analysis; diagnostic
accuracy. (Med Decis Making 1993;13:313-321)

A clinician or policy maker who is concerned about
the value of a diagnostic test may decide to go to the

library to find out how accurate the test is. There, he
or she will often discover that much has already been
done to characterize the accuracy of the index test by
comparing it with a reference test or &dquo;gold standard.&dquo;
Some index tests have been evaluated dozens of times.

Naturally, the various reports do not agree perfectly.
Success in using quantitative syntheses to summarize
research reports. might prompt our analyst to at-
tempt meta-analysis as a means of summarizing and

understanding the variety of published reports on di-

agnostic accuracy.
We address two problems in applying meta-analysis

to diagnostic technologies. First, there is no one num-
ber that represents accuracy. Second, there are many
reports of diagnostic accuracy, and they don’t agree.
’I’his paper presents a method for summarizing dis-

crepant data on the accuracy of diagnostic technol-

ogies, gives case studies of its application, and pro-
vides guidelines for its use.

RaUonale for Using a Curve to Summarize Accuracy
A therapeutic technology is generally evaluated in

a homogeneous population of persons all of whom

have the disease in question. A single number, per-
haps the cure rate, can be used to describe the efficacy
of the therapy in that population. (If there are many
outcomes of interest, a family of numbers may be
needed.) In contrast, a diagnostic technology is ap-
plied to a mixed population of patients with and with-
out the disease. At least two parameters are needed
to describe this situation. On the one hand, the test
should perform well in detecting sick patients. This is
represented as the true-positive rate (TPR), or sensi-
tivity. On the other hand, it should also be accurate
in identifying the well. This kind of accuracy is meas-
ured as the false-positive rate (FPR) (one minus the
specificity) of the test.
The TPR and the FPR can be made to vary in any

given test in any given population by changing the
criterion for a positive test. This criterion is called the
threshold. More extreme values of the test are inter-

preted as indicating disease. Any test can be made to
look good in identifying the well (in other words have
high specificity) if the threshold for a positive test is
set very high. However, with a very high threshold, few
of the diseased patients will be detected and sensitivity
will suffer. Identifying the well and detecting the sick
are in constant tension. There is a family of pairs of
true-positive and false-positive rates that describe the
functioning of any diagnostic test.
When arrayed on a graph of true-positive vs false-

positive rates, this family of numbers generally traces
out a curve, called the receiver operating characteristic
(ROC) curve (fig. 1). Any report that provides only a
single TPR and a single FPR is not providing a full
picture of the test’s accuracy. It is stating the two kinds
of accuracy at a particular threshold only. Often, as in
imaging studies, the threshold is not well defined, but
the trade-off between TPR and FPR applies all the same.
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FIGURE 1. A typical receiver operating characteristic curve. The ver-
tical axis depicts the true-positive rate (TPR) of the test. The false-
positive rate (FPR) varies along the horizontal.

Need fop Meta-~alysis
Unfortunately, full ROC curves are rarely published.

More often there are a number of studies, all pur-

porting to report on the same test, and all giving just
a pair of numbers: the true-positive rate and the false-
positive rate. Usually, the threshold at which accuracy
was measured is not mentioned or is subject to sub-
stantial inter-operator variation.

In figure 2, there are seven points. Each represents
one study of a diagnostic test. We’ve plotted each ac-
cording to its reported true-positive rate on the vertical
axis and its reported false-positive rate on the hori-
zontal axis. As is often the case, the reports don’t agree.

I-O1JC R-UZIILIVC MOLe;

FIGURE 2. Seven hypothetical estimates of test accuracy. Each point
represents a single report of a hypothetical test’s accuracy. The
simple mean of the true-positive rate and the false-positive rate is
shown by the arrow. Notice that the joint mean does not fall near
any of the data.

How should we summarize these numbers? A first

guess would be to take the average true-positive rate
and the average false-positive rate, but this is often

very misleading. For these seven studies, the average
falls far away from any of the seven. It does not seem
to provide an adequate summary because the two av-
erages form a single point that does not take into ac-
count the tension between TPR and FPR that is gen-
erated by varying threshold.3

A Method fop Estimating a Summary ROC Curve
How can we plot a summary receiver operating

characteristic (SROC) curve? We would like to perform
some kind of analysis that estimates a smooth curve
through (or near) all the data points. The raw data
consist of the fourfold tables of true positives, false
positives, false negatives, and true negatives from each
relevant report. First, we transform the vertical and
horizontal scales in a way that will reasonably allow
us to fit a straight-line regression. Next, we estimate
the slope and intercept of that line. Then we reverse
the transformation to find the SROC curve. Some prop-
erties of this method are described in somewhat more

detail elsewhere.’-6

Following methods widely used in the analysis of
binaiy data, we convert the TPR and FPR from each
study to their logistic transforms. ’I’he logit of the TPR
is the logarithm of the TPR divided by one minus the
TPR:

Likewise, for the FPR:

If either the TPR or the FPR is exactly zero or one (as
happens when the fourfold table of test data contains
a zero cell), then equations 1 and 2 are undefined. We
avoid this by adding one half to all counts in all the
tables (including the non-zero counts) that are used
to calculate TPR and FPR. We now define:

S is the sum of the two transforms and is related to
how often the test is positive, which is related to the
test threshold. D is the difference between the two
transforms and is a measure of how well the test dis-
criminates between the two populations of well and
sick subjects.
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In general, TPR and FPR tend to increase (and de-
crease) together. Many circumstances that render true-
positive judgements more likely also make false-pos-
itive judgements more likely. Chief among these, but
not alone, is variation in threshold. This positive co-
variation, after conversion to the logit scale, is likely
to contain an important component of linear regres-
sion. It is that which our methods address. At first it

seems natural to regress logit TPR on logit FPR-or
vice versa. These two regressions offer themselves, but
neither is especially natural. However, linear regres-
sion of either on the other implies that D has a linear
regression upon S, and D is the natural dependent
variable. In fact, D is the log-odds ratio, a direct meas-
ure of discriminatory power. S is large and positive if
both TPR and FPR are large, and negative if they are
small, so the plot of data points in (S, D) space displays
how the discriminatory power, as captured in the log-
odds ratio, may vary with the stringency of the test
criteria (or other causes of high or low positive test
rates). We have found that we are following here in
footsteps more than 20 years old (Cox,’ example 6.1).

Next, we need to estimate the relationship between
D and S. We fit a linear model:

In the appendix, three alternative methods of fitting
the straight line are illustrated with a numerical ex-
ample. Two of them are easily executed with a pocket
calculator. (We defer to a later section discussion of
how the statistical properties of the various ap-
proaches differ.)
Once we know the slope and intercept of the trans-

formed line, we can use equation 6 to back-transform
it to the more familiar representation:

When the slope, b, is near zero, this equation yields a
nice smooth curve that is concave down. The higher
the intercept, i, the closer the curve will be to the upper
left-hand corner. Put another way, the height of the
transformed line is a measure of how well the test

discriminates between the sick and the well. The far-
ther apart these two populations are, the greater is i.

The slope, b, is also interesting. When the populations
of sick and well have similar variances, the slope of
the line, b, is near zero and the resulting SROC curve
is nearly symmetrical. If the two populations (the sick
and the well) have very different variances, the slope
of the line will be far from zero, and the SROC curve

will have a distorted appearance. For practical pur-

FIGURE 3. A summary receiver operating characteristic (SROC) curve
for the seven hypothetical estimates of figure 2, derived by the method
described in the text.

poses, if - 0.5 < b < + 0.5, then the SROC curve looks

reasonably like a typical ROC curve.
Since Dk is the log-odds ratio of the kth study, a

summary of D (by equally weighted mean, weighted
mean, or median, for example) can serve as a reason-
able estimate of the discriminating power of the test.
D is a more satisfactory summary when b is near zero,
that is, when the discriminatory power does not vary
much as stringency varies.

Figure 3 is the curve generated from the seven sam-
ple data points we averaged earlier. Unlike a traditional
ROC curve, which describes the impact of threshold
in a single patient population, this curve describes the
test in many populations. Just as the mean can sum-
marize a set of numbers, this curve summarizes the
central tendency of a set of accuracy reports.
Because this method involves regression analysis, it

is more or less susceptible to the untoward effects of
extreme outliers. For instance, if we are examining a
test that is used to &dquo;rule in&dquo; serious disease, we may
insist that it be operated with a threshold that results
in very high specificity (low FPR), even if the sensitivity
(TPR) is reduced. If one or more studies report very
high TPR and FPR, the estimated SROC curve will be
heavily influenced by data that have little bearing on
the clinical problem. We advise restricting analysis to
those data that lie within a clinically determined &dquo;rel-

evant range,&dquo; determined prior to the data analysis.
Likewise, we do not extrapolate the SROC curve be-
yond the range of the included data. Examining only
a relevant range introduces a bias that slightly inflates
the apparent accuracy of the index test, but this bias
is not large 5
The curve represents a simplifying approach that

allows us to approach this question: Why do the dif-
ferent estimates of accuracy vary in both TPR and FPR?

There are several possible answers:
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FIGURE 4. Leukocyte esterase dipstick test data. The horizontal axis
depicts the quantity S (see equation 3) and the vertical axis repre-
sents D (equation 4) for 35 reports of the accuracy of the leukocyte
esterase urine dipstick test as compared with urine culture.

The reports study different diseases

The reports study different reference tests

The reports study different types of patients

The reports study populations with different preva-
lences

The reports study different index tests

The reports use different study methodologies

The reports have random error

The reports use different thresholds (threshold effect)

By arraying the reports as points in ROC space and
searching for an SROC curve, we investigate the pos-
sibility that the threshold effect (or other factors that
affect TPR and FPR together) explains much or all of
the variation in reported accuracy. If all the points fall
near a single ROC curve, their diversity can be ex-
plained, in large part, by differences in threshold (or
other such factors). The strength of this approach is
not that we are sure that the threshold effect is always
the cause of the variation in accuracy, but rather that

it nearly always accounts for at least some of the var-
iation. If we do not account for the threshold effect,
we have no hope for understanding the other causes
of variation.

Case Study 1: Using the SROC to Summarize Accuracy Data
We analyzed 35 reports that each compared a leu-

kocyte esterase dipstick with culture for bacteriuria.4
We converted the data to their logistic transforms to

FIGURE 5. Leukocyte esterase dipstick test data regression. The data
and axes are the same as those in figure 4. The line represents the
least-squares regression line through the 35 data points weighted
by the inverse of the variance of each study.

obtain figure 4. Notice that the data tend to form a
horizontal line. In the next step, we used weighted
least-squares regression to obtain a line (fig. 5). The

slope (b) is 0.06 and the intercept (i) is 2.4. (The weights
for this regression happen to be higher for data points
with lower values of D. Therefore, the regression line
falls below the apparent midpoint of the data.) Then
we back-transformed the line to obtain the curve in

figure 6. Notice that we do not extrapolate the curve
past the range of empiric data.
The curve has several advantages. First, it appears

to represent the central tendency of all the included
data. Second, it is completely specified by just two
parameters, b and i. Third, it has the familiar concave-
down form that represents the tension between the

FIGURE 6. Leukocyte esterase dipstick test data back-transformed.
The data and curve from figure 5 were back-transformed (using
equation 6) to allow representation in the familiar receiver operating
curve space.
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FIGURE 7. Thermography study data. Twenty-eight studies of the
accuracy of thermography in back pain are presented. The format
is the same as that in figure 4. The crosses represent 22 studies of
infrared thermography. The six circles represent studies of liquid
crystals thermography.

well and the sick. Fourth, it was constructed without

knowledge of the specific threshold for positivity em-
ployed in each report. We interpret the curve as more
or less consistent with each of the included reports
of accuracy. It serves as the best available summary of
the studies of the diagnostic accuracy of the technol-
ogy.

Summary ROC vs Single-population ROC
The new SROC curve from the meta-analysis differs

from the traditional single-population ROC analysis in
some important ways. In traditional ROC analysis, each
curve represents a single population. The summary
ROC curve is derived from several independent pop-
ulations. A single-population ROC curve describes how
TPR and FPR vary as the threshold varies, all else being
held constant. The new method summarizes many

reports without specifying which variables are differ-
ent from report to report.
The SROC curve serves principally as a compact

description of the accuracy of a diagnostic test. Where
two different tests for the same purpose are under

consideration, the two summaries capture the infor-
mation at hand, and statistical significance can be tested
in various ways, one of which we show in case study
2. Another use of the SROC is in constructing decision
models; a fuller discussion appears in case study 4.

Case Study 2: Using S10t h Compare Technologies
The summary curve has been useful to analyze the

impacts of index test characteristics upon reported
accuracy. For instance, figure 7 shows transformed
data from 28 studies of thermography in low back

FIGURE 8. Thermography study data back-transformed. The weighted
least-squares-estimated summary receiver operating curve for each
modality is shown. The two curves are both clinically and statisti-
cally different.

pain g The 22 crosses represent studies that used in-
frared thermography. The six circles come from re-
ports on liquid crystal thermography. Notice that the
crosses sit higher on the graph than the circles. The
average difference in height represents the difference
in discrimination between the two test methods. We

tested the difference between the two groups by using
Student’s t-test. The difference is statistically signifi-
cant at p = 0.003.

After back-transforming the data, we can see (fig. 8)
that the two curves they generate are very different.
We conclude that the accuracy of thermography is
highly sensitive to the type of equipment used. We are
able to draw this conclusion without knowing the exact
threshold for positivity used in each of the reports.

Case Study 3 : Using SROC to Meet Outliers
Summaries may also be useful to detect discrepant

points, or outliers. Figure 9 shows data from 11 reports
of the accuracy of technetium bone scanning for os-
teomyelitis in the foot.9 Although there is a lot of het-
erogeneity among these points, the most disturbing
data come from the study marked as an outlier. This
study suggests that bone scans are worse than a ran-
dom coin flip for diagnosing osteomyelitis! A careful
review revealed that this study was done with about
half the dose of technetium that the other investigators
used. Since this dose is not generally used anymore,
it may be reasonable to exclude this study from anal-
ysis.

With this study excluded, the curve shifts upward.
Looking at figure 10, we conclude that the dose of
technetium is important. Again, this conclusion does
not require specific knowledge of the precise threshold
employed in each study.
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FIGURE 9. Bone scanning data. The accuracies from 11 published
reports are displayed in receiver operating curve space. Notice that
the outlier has a false-positive rate that is greater than its true-

positive rate.

Case Study 4: Using SROC to Specity the Opflmm Operating
Chapacteplsdcs of a Test

Receiver operating characteristic curves, including
meta-analytic SROC curves, do not specify the exact
operating point (the threshold and its associated TPR
and FPR) that is best. This depends upon factors be-
sides the accuracy of the test. These factors include

the prevalence of disease, the risks and benefits of the
four possible test results (TP, FP, FN, and TN), and all
of their consequences. If one knows the relative im-

portance of each of these factors and the shape of the
ROC curve, it is possible to derive the optimum op-
erating point on the ROC curved&dquo;
A modification of this approach starts with a deci-

sion tree that models the use of a diagnostic test. The
model requires estimates of TPR and FPR to calculate
the expected utility of testing. The usual technique is
to review the available data and make a point estimate
of TPR and FPR for the model. You can do sensitivity
analysis, but it is not clear whether to vary TPR and
FPR independently or simultaneously. So, instead of
specifying an exact pair of TPR and FPR, use equation
6. First, estimate b and i (and the other probabilities
and utilities in the tree) as well as possible. Wherever
FPR must be specified, put it in as a variable. For TPR,
use equation 6, which makes TPR a function of FPR.
You can subject the tree to a sensitivity analysis by
systematically varying FPR and recalculating the ex-
pected utility of testing at each FPR. Equation 6 will
ensure that for each value of FPR, the decision model

uses an appropriate value for TPR. You can simulta-
neously vary both aspects of the test’s accuracy by
changing only one variable: FPR. Typically, if you plot
the expected utility of testing on the vertical axis and

FPR on the horizontal axis, the resulting curve will
have an inverted U shape. The peak of the curve is the
optimum operating point. One should choose a
threshold for the test that yields the FPR (and TPR)
associated with the highest expected utility.
For example, the decision to use a technetium bone

scan to diagnose osteomyelitis in the inflamed foot of
a diabetic was modeled using a decision tree and the
summary ROC curve from figure 10.12 To detect the
optimum operating point, we performed a sensitivity
analysis of the effect of FPR on expected utility (fig.
11). The curve of expected utility reaches a maximum
at FPR = 0.47 and a utility of 0.983. At FPR = 0.47, the
TPR is 0.84 as fixed by the use of equation 6 in the
decision model.

Discussion

HISTORY AND ORIGIN OF THESE IDEAS

This paper might be thought of as a contribution to
meta-analysis of ROC studies. Despite the growing in-
terest in meta-analysis, we found only one other such
paper, 13 plus an important letter.3 But tools for such
meta-analysis have long been at hand. Dorfman and
Ain4 gave a method for combining different 2 X 2
tables representing independent studies of a single
discrimination task with differing thresholds. That
method (maximum likelihood estimation using nor-
mal rather than logistic distributions) could be used
to address the problems treated here. We have already
mentioned plotting sums and differences of logistic
transforms as a data-analytic method (Cox/ example
6.1), but one not yet in the context of diagnostic testing.

FIGURE 10. Bone scanning data sensitivity analysis. The lower curve
is the summary receiver operating curve (SROC) derived from all 11
reports of the accuracy of technetium bone scanning in pedal os-
teomyelitis. The upper curve is the SROC with the one outlier study
eliminated.
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CHOICE OF TRANSFORMATION METHOD

We chose to use the logistic transform rather than
the probit transform not from considerations of the-
ory, but because we find statistical analysis is then
somewhat more straightforward. We agree with Hanleyls
that the choice between the two approaches is hardly
likely ever to produce important differences in inter-
pretation. But the logit has one special virtue: kinship
of the log-odds ratio to the logistic transform is a real
advantage in medical applications because the log-
odds ratio enjoys a wide currency in epidemiology
and clinical medicine. It would be possible to replace
the logit transformation by the probit in our technique,
and the outcomes would presumably be very similar.
The difference in convenience is clear but not great.
When the regression of D upon S is flat, i.e., when b
can be taken as zero, then each study’s Di is an esti-
mate of the true average log-odds ratio. Here, use of
the logistic transform provides access to a well-under-
stood body of theory that treats odds ratios, and this
is an argument of some weight favoring the logistic
approach.

UNCERTAINTY

This issue arises in several ways. First, the (asymp-
totic) standard error of both S and D as calculated
from a table with frequencies, a, b, c, d may be taken
as:

and if the frequencies were all (say) quadrupled, the
&dquo;standard error of the point&dquo; (i.e., of both its two co-
ordinates) would shrink by half. If sample sizes at each
study were to grow very large, the uncertainty about
each point would disappear.

Second, maybe the points would also get closer and
closer to a common ROC curve (as a maximum-like-
lihood analysis presumes). If different studies lay on
somewhat different ROC curves, then we would not
see the (S, D) points for the studies approach a single
ROC curve as the studies grew very large in size. In
this latter case we would be confronted not only with
binomial variation, but also with a between-studies

component of variation. A thorough treatment of these
complexities is beyond the scope of this paper, but it
can be said that use of the t-test to compare deviations

(in two groups) from a single line fitted to the com-
bined groups is a robust procedure, giving useful in-
ferences whether there is or is not a between-studies

component of variation.
Third, some linear regression methods will produce

standard errors and confidence intervals for both i and
b. We have not found these to be very useful, nor do

they transform nicely into confidence bands for the

FIGURE 11. Finding the optimum operating point of the bone scan
test. The horizontal axis depicts false-positive rate (FPR). For each
FPR, a decision model calculated the true-positive rate (TPR) by
using equation 6. The model used FPR, TPR, prevalence, and the
values of the expected outcomes to calculate the expected utility
of testing.

SROC. But if taking b as zero is acceptable, then con-
fidence bands for the SROC become available, for in
that case each Dk is an estimate of the &dquo;true&dquo; D cor-

responding to the collection of studies. Confidence
intervals can be based on the sample average and
standard deviation of D, or upon the weighted average,
or upon the median Dk for which standard nonpar-
ametric methods will produce a confidence interval.

GOODNESS OF FIT AND OUTLIERS

This issue is related to &dquo;overdispersion,&dquo; the exis-
tence of a between-studies component of variation,
but also includes the problem of identifying and deal-
ing with outliers. This is another large area incapable
of full treatment here. Our outlook is pretty well rep-
resented in case study 3. The analyses including and
excluding one study differed sharply, and brought the
question forcefully to the fore. When there appeared
a clear substantive explanation of why a particular value
might well be invalid we felt easy in choosing to omit
that point. A more formal treatment would not nec-

essarily be more convincing, especially as it would

require choosing unverified assumptions to construct
a model in terms of which to conduct the formal anal-

ysis.

VERY ACCURATE TESTS

In some clinical settings, we have come upon log-
odds ratios much larger than 3.0 (which corresponds
to odds ratio 20.0). With high odds ratios (100 or more),
zero frequencies become quite common, and the size
of the continuity correction (we have offered 1/2 here)
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becomes quite influential. We are not satisfied with
our approach where zero frequencies are quite com-
mon. We expect that recourse to the bootstrap may
prove valuable in such situations, and are investigating
that possibility.
We have described a method to summarize and an-

alyze multiple reports of the accuracy of a diagnostic
test. We choose to represent accuracy as a summary
ROC curve, rather than as a point estimate, because
we believe that different thresholds are generally in
use in different reports, which causes TPR and FPR to

covary. Other factors can also induce such covariation.

The logistic transform provides a convenient vehicle
for applying linear regression methods to a curvilinear
problem. The resultant summary ROC curve is useful
for summarizing a body of diagnostic accuracy liter-
ature, comparing technologies, detecting outliers, and
finding the optimum operating point of the test. Ex-
tending the logic of meta-analysis to diagnostic testing
provides a new tool for technology assessment.

Data for the case examples were graciously provided by Drs. Richard
M. Hoffman, Terry A. Hurlbut III, Daniel L. Kent, and Alvin I. Mushlin.
Drs. Daniel Rabinowitz and David Shapiro were influential contrib-
utors of many of the analytic ideas presented here. Dr. Robert F.
Nease provided helpful comments.
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APPENDIX

Example of Calculations

As an example of the calculations required by this
method, we demonstrate its application to a previ-
ously published data set. Table A shows results of nine
studies of myelography used for detecting lumbar disk
herniation, as presented by Kardaun and Kardaun
The frequencies of true positives, false negatives, etc.,
are given. These frequencies are reconstructed from
the sample sizes and rates in the Kardaun article. Anal-
ysis requires computing the values of S and D from
the first four columns. We illustrate the procedure for
the top line:

These values appear for Hudgin’s study in table A. The
nine studies are represented in figure 12 by dots that
display their values of S and D.
Now the problem is to estimate a line through the

points described by S and D. Various regression tech-
niques are available. Equally weighted least squares is
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Table A o Kardaun and Kardaun 13 Myelography Data*

W We omitted four studies from analysis because they report FPR > 0.5, which we consider out of the relevant range. Kardaun and Kardaun excluded one study
from their analysis because of apparent bias. We omit it here. For more information about these studies, see Kardaun and Kardaun.’3

tS = the sum of the two transforms; it is related to how often the test is positive, which is related to the test threshold.
$D = the difference between the two transforms; it is a measure of how well the test discriminates between the two populations of well and sick subjects.

FIGURE 12. Data from myelography studies. The vertical axis rep-
resents D, the difference between logit(TPR) and logit(FPR). The
horizontal axis represents S, the sum of the two logits. The nine
data points (from Kardaun and Kardaun) are displayed with the
names of the first authors of the original reports.

readily obtained by many pocket calculators. For these
data, i = 3.32 and b = - 0.19.
Another attractive regression technique is called ro-

bust resistant fitting.16,17 It offers protection against
outliers and provides these estimates: i = 3.48 and

b = - 0.26.

Weighted least squares can be used by finding and
then using weights in a weighted regression program.
The weights are given in the last column of table A.
Each is the reciprocal of the asymptotic variance of D.
Again we illustrate the calculation using the first row
of data from the table:

The weighted regression fitted line has parameters i
= 3.26 and b = - 0.26.

The ROC curve in the unit square is constructed

from b and i by using equation 6, which for each given
value of FPR produces the corresponding value of TPR,
once b and i are given. The three ROC curves, obtained
by backmapping the three lines, appear in figure 13,
together with the FPR and TPR for each of the nine
studies.

l’IGURE 1;1. unree regression metnoas comparea. i ne tree nnes

represent back-transformed summary ROC curves for the nine data

points in figure 12. The top line was generated using robust regres-
sion techniques. The middle line was generated by unweighted
least-squares regression. The bottom line is from weighted least-
squares regression.
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